🦉
Programming Notes
  • My Programming Notes
  • CKA Exam Preparation
    • Certified Kubernetes Administrator
    • Setup Minikube
    • Network Design Principles
    • Role-Based Access Control (RBAC)
    • Namespace
    • Resource Quota
    • Pod
    • Deployment
    • Deployment: Rollout
    • ConfigMap
    • Service
    • Service: kubectl expose
    • Pod: Resources Management
    • Pod & Container: Quality of Service Class
    • Pod & Container: Probes
    • Limit Range
    • Scaling: Manual
    • Scaling: Horizontal Pod Autoscaler
    • Persistent Volume & Claim
    • Secret
    • Ingress: Routing
    • Ingress: TLS
    • Ingress: Rate Limit
    • Ingress: Basic Auth
    • Ingress: CRD (Custom Resource Definition)
    • Job
    • CronJob
    • Mutli-Node Cluster
  • Golang
    • Generics
    • Context
    • Goroutines and Channels in Go
    • Goroutine: Concurrency vs Parallelism
    • Goroutine: Performance & Tradeoffs
    • JSON: omitzero
  • Rust
    • Arrays & Slices
    • Closures
    • Generics & Traits
    • Iterators
    • Run Code Simultaneously
    • String vs &str
    • Tests
    • Rustlings Exercises
      • Variables
      • Functions
      • If
      • Primitive Types
      • Vectors
      • Move Semantics
      • Structs
      • Enums and Matching Pattern
      • Strings
      • Modules
      • Hashmaps
      • Options
      • Error Handling
      • Generics
      • Traits
      • Lifetimes
      • Tests
      • Iterators
      • Smart Pointers
      • Threads
      • Macros
      • Quiz 1
      • Quiz 2
      • Quiz 3
  • Software Engineering
    • CAP Theorem
    • Circuit Breaker
    • Decoupling
    • GraphQL: Query Caching
    • HMAC Signature
    • Idempotency
    • Monolith VS Microservice
    • OWASP Top 10 2021
    • PCI DSS
    • PostgreSQL: Partitioning
    • PostgreSQL: Replication
    • Protobuf & gRPC
    • Redis: Streams
    • Resource Scaling
    • Signed URL
    • SOLID
    • Stack VS Heap
    • Stateful VS Stateless
  • Site Reliability Engineering
    • Chaos Engineering
    • Distributed Tracing
    • Kubernetes (k8s)
    • SLA, SLO, and SLI Metrics
    • Site Reliability Engineer
  • Others
    • FFMPEG Cheat sheet
Powered by GitBook
On this page
  • iterators1.rs
  • iterators2.rs
  • iterators3.rs
  • iterators4.rs
  • iterators5.rs
  1. Rust
  2. Rustlings Exercises

Iterators

PreviousTestsNextSmart Pointers

Last updated 4 months ago

  • The iterator pattern allows you to perform some task on a sequence of items in turn.

  • Iterators provide a way to traverse, transform, or consume elements efficiently without needing to manually manage indices or loops.

  • Rust iterators are lazy by default, meaning they don’t perform operations until explicitly consumed.

  • collect() can take anything iterable, and turn it into a relevant collection.

  • References:

iterators1.rs

// When performing operations on elements within a collection, iterators are
// essential. This module helps you get familiar with the structure of using an
// iterator and how to go through elements within an iterable collection.

fn main() {
    // You can optionally experiment here.
}

#[cfg(test)]
mod tests {
    #[test]
    fn iterators() {
        let my_fav_fruits = ["banana", "custard apple", "avocado", "peach", "raspberry"];

        // Create an iterator over the array.
        let mut fav_fruits_iterator = my_fav_fruits.iter();

        assert_eq!(fav_fruits_iterator.next(), Some(&"banana"));
        assert_eq!(fav_fruits_iterator.next(), Some(&"custard apple")); // Replace `todo!()`
        assert_eq!(fav_fruits_iterator.next(), Some(&"avocado"));
        assert_eq!(fav_fruits_iterator.next(), Some(&"peach")); // Replace `todo!()`
        assert_eq!(fav_fruits_iterator.next(), Some(&"raspberry"));
        assert_eq!(fav_fruits_iterator.next(), None); // Replace `todo!()`
    }
}
  • This exercise is simple we just need to create iterators based on my_fav_fruits array.

  • We can do this by calling iter method like this:

    let mut fav_fruits_iterator = my_fav_fruits.iter();

iterators2.rs

// In this exercise, you'll learn some of the unique advantages that iterators
// can offer.

// Complete the `capitalize_first` function.
// "hello" -> "Hello"
fn capitalize_first(input: &str) -> String {
    let mut chars = input.chars();
    match chars.next() {
        None => String::new(),
        Some(first) => format!("{}{}", first.to_uppercase(), chars.as_str()),
    }
}

// Apply the `capitalize_first` function to a slice of string slices.
// Return a vector of strings.
// ["hello", "world"] -> ["Hello", "World"]
fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
    words.iter().map(|w| capitalize_first(w)).collect()
}

// Apply the `capitalize_first` function again to a slice of string
// slices. Return a single string.
// ["hello", " ", "world"] -> "Hello World"
fn capitalize_words_string(words: &[&str]) -> String {
    words.iter().map(|w| capitalize_first(w)).collect()
}

fn main() {
    // You can optionally experiment here.
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_success() {
        assert_eq!(capitalize_first("hello"), "Hello");
    }

    #[test]
    fn test_empty() {
        assert_eq!(capitalize_first(""), "");
    }

    #[test]
    fn test_iterate_string_vec() {
        let words = vec!["hello", "world"];
        assert_eq!(capitalize_words_vector(&words), ["Hello", "World"]);
    }

    #[test]
    fn test_iterate_into_string() {
        let words = vec!["hello", " ", "world"];
        assert_eq!(capitalize_words_string(&words), "Hello World");
    }
}
  • First task in this exercise is to complete the capitalize_first function.

    • We already have match syntax for first char for the given input.

    • We just need to uppercase it and combine it with the reset of the chars.

    • We can do it by using format or + like this:

      format!("{}{}", first.to_uppercase(), chars.as_str())

      or

      first.to_uppercase().to_string() + chars.as_str()
  • Second and third task is kinda similar, in here we will learn how powerful method collect is.

  • In the capitalize_words_vector function we need to iterate given words and capitalize it using function in the first task.

  • We can do it like this:

    words.iter().map(|word| capitalize_first(word)).collect()

    collect() can take anything iterable, and turn it into a relevant collection.

  • In this case rust will convert the iterator to desired return type which is Vec<String>.

  • This also means that we can use the same code for our next task in function capitalize_words_string and Rust will convert the iterator into desired return type which is String.

iterators3.rs

#[derive(Debug, PartialEq, Eq)]
enum DivisionError {
    // Example: 42 / 0
    DivideByZero,
    // Only case for `i64`: `i64::MIN / -1` because the result is `i64::MAX + 1`
    IntegerOverflow,
    // Example: 5 / 2 = 2.5
    NotDivisible,
}

// Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
// Otherwise, return a suitable error.
fn divide(a: i64, b: i64) -> Result<i64, DivisionError> {
    if b == 0 {
        return Err(DivisionError::DivideByZero);
    }
    let (r, overflow) = a.overflowing_div(b);
    if overflow {
        return Err(DivisionError::IntegerOverflow);
    }
    if a % b != 0 {
        return Err(DivisionError::NotDivisible);
    }
    Ok(r)
}

// Add the correct return type and complete the function body.
// Desired output: `Ok([1, 11, 1426, 3])`
fn result_with_list() -> Result<Vec<i64>, DivisionError> {
    let numbers = [27, 297, 38502, 81];
    let division_results = numbers.into_iter().map(|n| divide(n, 27));
    division_results.into_iter().collect()
}

// Add the correct return type and complete the function body.
// Desired output: `[Ok(1), Ok(11), Ok(1426), Ok(3)]`
fn list_of_results() -> Vec<Result<i64, DivisionError>> {
    let numbers = [27, 297, 38502, 81];
    let division_results = numbers.into_iter().map(|n| divide(n, 27));
    division_results.into_iter().collect()
}

fn main() {
    // You can optionally experiment here.
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_success() {
        assert_eq!(divide(81, 9), Ok(9));
    }

    #[test]
    fn test_divide_by_0() {
        assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
    }

    #[test]
    fn test_integer_overflow() {
        assert_eq!(divide(i64::MIN, -1), Err(DivisionError::IntegerOverflow));
    }

    #[test]
    fn test_not_divisible() {
        assert_eq!(divide(81, 6), Err(DivisionError::NotDivisible));
    }

    #[test]
    fn test_divide_0_by_something() {
        assert_eq!(divide(0, 81), Ok(0));
    }

    #[test]
    fn test_result_with_list() {
        assert_eq!(result_with_list().unwrap(), [1, 11, 1426, 3]);
    }

    #[test]
    fn test_list_of_results() {
        assert_eq!(list_of_results(), [Ok(1), Ok(11), Ok(1426), Ok(3)]);
    }
}
  • First task in this exercise is to complete the function divide to return error in accordance with enum DivisionError.

  • For the overflow checking we can do it by using method overflowing_div.

    if b == 0 {
        return Err(DivisionError::DivideByZero);
    }
    let (r, overflow) = a.overflowing_div(b);
    if overflow {
        return Err(DivisionError::IntegerOverflow);
    }
    if a % b != 0 {
        return Err(DivisionError::NotDivisible);
    }
    Ok(r)
  • Second task is to fix function result_with_list.

    • The return signature that satisfy the desired output should be Result<Vec<i64>, DivisionError>.

    • And we can use into_iter().collect() method chain to convert the iterator to the desired output.

  • Similar like previous task, the last task is to fix function list_of_results.

    • The return signature that satisfy the desired output should be Vec<Result<i64, DivisionError>>.

    • And we can use into_iter().collect() method chain to convert the iterator to the desired output.

iterators4.rs

fn factorial(num: u64) -> u64 {
    // Complete this function to return the factorial of `num` which is
    // defined as `1 * 2 * 3 * … * num`.
    // https://en.wikipedia.org/wiki/Factorial
    //
    // Do not use:
    // - early returns (using the `return` keyword explicitly)
    // Try not to use:
    // - imperative style loops (for/while)
    // - additional variables
    // For an extra challenge, don't use:
    // - recursion
    // (1..=num).fold(1, |r, x| r * x)
    (1..=num).product()
}

fn main() {
    // You can optionally experiment here.
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn factorial_of_0() {
        assert_eq!(factorial(0), 1);
    }

    #[test]
    fn factorial_of_1() {
        assert_eq!(factorial(1), 1);
    }
    #[test]
    fn factorial_of_2() {
        assert_eq!(factorial(2), 2);
    }

    #[test]
    fn factorial_of_4() {
        assert_eq!(factorial(4), 24);
    }
}
  • This exercise is straightforward, we just need to finish the factorial function.

  • We can use fold method to do this.

    Folds every element into an accumulator by applying an operation, returning the final result.

    (1..=num).fold(1, |r, x| r * x)
  • But then you will see in that rust compiler will suggest to use product instead like this:

    Iterates over the entire iterator, multiplying all the elements

    (1..=num).product()

iterators5.rs

// Let's define a simple model to track Rustlings' exercise progress. Progress
// will be modelled using a hash map. The name of the exercise is the key and
// the progress is the value. Two counting functions were created to count the
// number of exercises with a given progress. Recreate this counting
// functionality using iterators. Try to not use imperative loops (for/while).

use std::collections::HashMap;

#[derive(Clone, Copy, PartialEq, Eq)]
enum Progress {
    None,
    Some,
    Complete,
}

fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
    let mut count = 0;
    for val in map.values() {
        if *val == value {
            count += 1;
        }
    }
    count
}

// Implement the functionality of `count_for` but with an iterator instead
// of a `for` loop.
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
    // `map` is a hash map with `String` keys and `Progress` values.
    // map = { "variables1": Complete, "from_str": None, … }
    map.iter()
        .map(|(_k, p)| if *p == value { 1 } else { 0 })
        .sum()
}

fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
    let mut count = 0;
    for map in collection {
        for val in map.values() {
            if *val == value {
                count += 1;
            }
        }
    }
    count
}

// Implement the functionality of `count_collection_for` but with an
// iterator instead of a `for` loop.
fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
    // `collection` is a slice of hash maps.
    // collection = [{ "variables1": Complete, "from_str": None, … },
    //               { "variables2": Complete, … }, … ]
    collection.iter().map(|m| count_iterator(m, value)).sum()
}

fn main() {
    // You can optionally experiment here.
}

#[cfg(test)]
mod tests {
    use super::*;

    fn get_map() -> HashMap<String, Progress> {
        use Progress::*;

        let mut map = HashMap::new();
        map.insert(String::from("variables1"), Complete);
        map.insert(String::from("functions1"), Complete);
        map.insert(String::from("hashmap1"), Complete);
        map.insert(String::from("arc1"), Some);
        map.insert(String::from("as_ref_mut"), None);
        map.insert(String::from("from_str"), None);

        map
    }

    fn get_vec_map() -> Vec<HashMap<String, Progress>> {
        use Progress::*;

        let map = get_map();

        let mut other = HashMap::new();
        other.insert(String::from("variables2"), Complete);
        other.insert(String::from("functions2"), Complete);
        other.insert(String::from("if1"), Complete);
        other.insert(String::from("from_into"), None);
        other.insert(String::from("try_from_into"), None);

        vec![map, other]
    }

    #[test]
    fn count_complete() {
        let map = get_map();
        assert_eq!(count_iterator(&map, Progress::Complete), 3);
    }

    #[test]
    fn count_some() {
        let map = get_map();
        assert_eq!(count_iterator(&map, Progress::Some), 1);
    }

    #[test]
    fn count_none() {
        let map = get_map();
        assert_eq!(count_iterator(&map, Progress::None), 2);
    }

    #[test]
    fn count_complete_equals_for() {
        let map = get_map();
        let progress_states = [Progress::Complete, Progress::Some, Progress::None];
        for progress_state in progress_states {
            assert_eq!(
                count_for(&map, progress_state),
                count_iterator(&map, progress_state),
            );
        }
    }

    #[test]
    fn count_collection_complete() {
        let collection = get_vec_map();
        assert_eq!(
            count_collection_iterator(&collection, Progress::Complete),
            6,
        );
    }

    #[test]
    fn count_collection_some() {
        let collection = get_vec_map();
        assert_eq!(count_collection_iterator(&collection, Progress::Some), 1);
    }

    #[test]
    fn count_collection_none() {
        let collection = get_vec_map();
        assert_eq!(count_collection_iterator(&collection, Progress::None), 4);
    }

    #[test]
    fn count_collection_equals_for() {
        let collection = get_vec_map();
        let progress_states = [Progress::Complete, Progress::Some, Progress::None];

        for progress_state in progress_states {
            assert_eq!(
                count_collection_for(&collection, progress_state),
                count_collection_iterator(&collection, progress_state),
            );
        }
    }
}
  • This exercise may looks intimidating but its quite simple.

  • First is we need to complete the function count_iterator.

    • Basically we need to return count of given hashmap values that match with given Progress.

    • We can use iterator, map it, then calculate the sum like this:

    map.iter().map(|(_k, p)| if *p == value { 1 } else { 0 }).sum()
  • Second is we need to complete the function count_collection_iterator.

    • Basically for each hashmap in the given collection we need to count it the matching progress and sum it.

    • Similar like the first task we can iter, map, then sum it like this:

    collection.iter().map(|m| count_iterator(m, value)).sum()
Iterator
iter
Trait iterator