🦉
Programming Notes
  • My Programming Notes
  • CKA Exam Preparation
    • Certified Kubernetes Administrator
    • Setup Minikube
    • Network Design Principles
    • Role-Based Access Control (RBAC)
    • Namespace
    • Resource Quota
    • Pod
    • Deployment
    • Deployment: Rollout
    • ConfigMap
    • Service
    • Service: kubectl expose
    • Pod: Resources Management
    • Pod & Container: Quality of Service Class
    • Pod & Container: Probes
    • Limit Range
    • Scaling: Manual
    • Scaling: Horizontal Pod Autoscaler
    • Persistent Volume & Claim
    • Secret
    • Ingress: Routing
    • Ingress: TLS
    • Ingress: Rate Limit
    • Ingress: Basic Auth
    • Ingress: CRD (Custom Resource Definition)
    • Job
    • CronJob
    • Mutli-Node Cluster
  • Golang
    • Generics
    • Context
    • Goroutines and Channels in Go
    • Goroutine: Concurrency vs Parallelism
    • Goroutine: Performance & Tradeoffs
    • JSON: omitzero
  • Rust
    • Arrays & Slices
    • Closures
    • Generics & Traits
    • Iterators
    • Run Code Simultaneously
    • String vs &str
    • Tests
    • Rustlings Exercises
      • Variables
      • Functions
      • If
      • Primitive Types
      • Vectors
      • Move Semantics
      • Structs
      • Enums and Matching Pattern
      • Strings
      • Modules
      • Hashmaps
      • Options
      • Error Handling
      • Generics
      • Traits
      • Lifetimes
      • Tests
      • Iterators
      • Smart Pointers
      • Threads
      • Macros
      • Quiz 1
      • Quiz 2
      • Quiz 3
  • Software Engineering
    • CAP Theorem
    • Circuit Breaker
    • Decoupling
    • GraphQL: Query Caching
    • HMAC Signature
    • Idempotency
    • Monolith VS Microservice
    • OWASP Top 10 2021
    • PCI DSS
    • PostgreSQL: Partitioning
    • PostgreSQL: Replication
    • Protobuf & gRPC
    • Redis: Streams
    • Resource Scaling
    • Signed URL
    • SOLID
    • Stack VS Heap
    • Stateful VS Stateless
  • Site Reliability Engineering
    • Chaos Engineering
    • Distributed Tracing
    • Kubernetes (k8s)
    • SLA, SLO, and SLI Metrics
    • Site Reliability Engineer
  • Others
    • FFMPEG Cheat sheet
Powered by GitBook
On this page
  • box1.rs
  • rc1.rs
  • arc1.rs
  • cow1.rs
  1. Rust
  2. Rustlings Exercises

Smart Pointers

PreviousIteratorsNextThreads

Last updated 4 months ago

  • Smart pointers are variables that contain an address in memory and reference some other data, but they also have additional metadata and capabilities.

  • Smart pointers in Rust often own the data they point to, while references only borrow data.

  • Box<T>: Handle recursive types, which the compiler cannot compute their size at compile-time.

  • Rc<T> (Reference Counted): Keeps track of how many references exist to the data and automatically cleans up when the reference count drops to zero.

  • Arc<T> (Atomic Reference Counted): Similar like RC but safe to be shared across threads.

  • Cow<T> (Clone On Write): provide immutable access to borrowed data, and clone the data lazily when mutation or ownership is required.

  • References:

box1.rs

// At compile time, Rust needs to know how much space a type takes up. This
// becomes problematic for recursive types, where a value can have as part of
// itself another value of the same type. To get around the issue, we can use a
// `Box` - a smart pointer used to store data on the heap, which also allows us
// to wrap a recursive type.
//
// The recursive type we're implementing in this exercise is the "cons list", a
// data structure frequently found in functional programming languages. Each
// item in a cons list contains two elements: The value of the current item and
// the next item. The last item is a value called `Nil`.

// Use a `Box` in the enum definition to make the code compile.
#[derive(PartialEq, Debug)]
enum List {
    Cons(i32, Box<List>),
    Nil,
}

// Create an empty cons list.
fn create_empty_list() -> List {
    List::Nil
}

// Create a non-empty cons list.
fn create_non_empty_list() -> List {
    List::Cons(10, Box::new(List::Nil))
}

fn main() {
    println!("This is an empty cons list: {:?}", create_empty_list());
    println!(
        "This is a non-empty cons list: {:?}",
        create_non_empty_list(),
    );
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_create_empty_list() {
        assert_eq!(create_empty_list(), List::Nil);
    }

    #[test]
    fn test_create_non_empty_list() {
        assert_ne!(create_empty_list(), create_non_empty_list());
    }
}
  • As the comment stated in this exercise, we need to use Box to wrap the recursive.

  • So we need to change the enum variant to Cons(i32, Box<List>).

  • Then complete the create function with List::Nill for empty cons list.

  • And List::Cons(10, Box::new(List::Nil)) for non-empty cons list.

rc1.rs

// In this exercise, we want to express the concept of multiple owners via the
// `Rc<T>` type. This is a model of our solar system - there is a `Sun` type and
// multiple `Planet`s. The planets take ownership of the sun, indicating that
// they revolve around the sun.

use std::rc::Rc;

#[derive(Debug)]
struct Sun;

#[derive(Debug)]
enum Planet {
    Mercury(Rc<Sun>),
    Venus(Rc<Sun>),
    Earth(Rc<Sun>),
    Mars(Rc<Sun>),
    Jupiter(Rc<Sun>),
    Saturn(Rc<Sun>),
    Uranus(Rc<Sun>),
    Neptune(Rc<Sun>),
}

impl Planet {
    fn details(&self) {
        println!("Hi from {self:?}!");
    }
}

fn main() {
    // You can optionally experiment here.
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn rc1() {
        let sun = Rc::new(Sun);
        println!("reference count = {}", Rc::strong_count(&sun)); // 1 reference

        let mercury = Planet::Mercury(Rc::clone(&sun));
        println!("reference count = {}", Rc::strong_count(&sun)); // 2 references
        mercury.details();

        let venus = Planet::Venus(Rc::clone(&sun));
        println!("reference count = {}", Rc::strong_count(&sun)); // 3 references
        venus.details();

        let earth = Planet::Earth(Rc::clone(&sun));
        println!("reference count = {}", Rc::strong_count(&sun)); // 4 references
        earth.details();

        let mars = Planet::Mars(Rc::clone(&sun));
        println!("reference count = {}", Rc::strong_count(&sun)); // 5 references
        mars.details();

        let jupiter = Planet::Jupiter(Rc::clone(&sun));
        println!("reference count = {}", Rc::strong_count(&sun)); // 6 references
        jupiter.details();

        // Clone the sun
        let saturn = Planet::Saturn(Rc::clone(&sun));
        println!("reference count = {}", Rc::strong_count(&sun)); // 7 references
        saturn.details();

        // Clone the sun
        let uranus = Planet::Uranus(Rc::clone(&sun));
        println!("reference count = {}", Rc::strong_count(&sun)); // 8 references
        uranus.details();

        // Clone the sun
        let neptune = Planet::Neptune(Rc::clone(&sun));
        println!("reference count = {}", Rc::strong_count(&sun)); // 9 references
        neptune.details();

        assert_eq!(Rc::strong_count(&sun), 9);

        drop(neptune);
        println!("reference count = {}", Rc::strong_count(&sun)); // 8 references

        drop(uranus);
        println!("reference count = {}", Rc::strong_count(&sun)); // 7 references

        drop(saturn);
        println!("reference count = {}", Rc::strong_count(&sun)); // 6 references

        drop(jupiter);
        println!("reference count = {}", Rc::strong_count(&sun)); // 5 references

        drop(mars);
        println!("reference count = {}", Rc::strong_count(&sun)); // 4 references

        // drop earth
        drop(earth);
        println!("reference count = {}", Rc::strong_count(&sun)); // 3 references

        // drop venus
        drop(venus);
        println!("reference count = {}", Rc::strong_count(&sun)); // 2 references

        // drop mercury
        drop(mercury);
        println!("reference count = {}", Rc::strong_count(&sun)); // 1 reference

        assert_eq!(Rc::strong_count(&sun), 1);
    }
}
  • With Rc reference can be shared and have multiple owners.

  • In this case we only need to use Rc::clone(&sun) instead of creating new Sun.

  • And then properly drop the planet so the test case at the end will not fail.

arc1.rs

// In this exercise, we are given a `Vec` of `u32` called `numbers` with values
// ranging from 0 to 99. We would like to use this set of numbers within 8
// different threads simultaneously. Each thread is going to get the sum of
// every eighth value with an offset.
//
// The first thread (offset 0), will sum 0, 8, 16, …
// The second thread (offset 1), will sum 1, 9, 17, …
// The third thread (offset 2), will sum 2, 10, 18, …
// …
// The eighth thread (offset 7), will sum 7, 15, 23, …
//
// Each thread should own a reference-counting pointer to the vector of
// numbers. But `Rc` isn't thread-safe. Therefore, we need to use `Arc`.
//
// Don't get distracted by how threads are spawned and joined. We will practice
// that later in the exercises about threads.

// Don't change the lines below.
#![forbid(unused_imports)]
use std::{sync::Arc, thread};

fn main() {
    let numbers: Vec<_> = (0..100u32).collect();

    // Define `shared_numbers` by using `Arc`.
    let shared_numbers = Arc::new(numbers);

    let mut join_handles = Vec::new();

    for offset in 0..8 {
        // Define `child_numbers` using `shared_numbers`.
        let child_numbers = Arc::clone(&shared_numbers);

        let handle = thread::spawn(move || {
            let sum: u32 = child_numbers.iter().filter(|&&n| n % 8 == offset).sum();
            println!("Sum of offset {offset} is {sum}");
        });

        join_handles.push(handle);
    }

    for handle in join_handles.into_iter() {
        handle.join().unwrap();
    }
}
  • This exercise is straightforward, we need to use Arc.

  • First create shared_numbers using Arc::new(numbers).

  • Then inside th for block create child_numbers using Arc::clone(&shared_numbers).

cow1.rs

// This exercise explores the `Cow` (Clone-On-Write) smart pointer. It can
// enclose and provide immutable access to borrowed data and clone the data
// lazily when mutation or ownership is required. The type is designed to work
// with general borrowed data via the `Borrow` trait.

use std::borrow::Cow;

fn abs_all(input: &mut Cow<[i32]>) {
    for ind in 0..input.len() {
        let value = input[ind];
        if value < 0 {
            // Clones into a vector if not already owned.
            input.to_mut()[ind] = -value;
        }
    }
}

fn main() {
    // You can optionally experiment here.
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn reference_mutation() {
        // Clone occurs because `input` needs to be mutated.
        let vec = vec![-1, 0, 1];
        let mut input = Cow::from(&vec);
        abs_all(&mut input);
        assert!(matches!(input, Cow::Owned(_)));
    }

    #[test]
    fn reference_no_mutation() {
        // No clone occurs because `input` doesn't need to be mutated.
        let vec = vec![0, 1, 2];
        let mut input = Cow::from(&vec);
        abs_all(&mut input);
        // Replace `todo!()` with `Cow::Owned(_)` or `Cow::Borrowed(_)`.
        assert!(matches!(input, Cow::Borrowed(_)));
    }

    #[test]
    fn owned_no_mutation() {
        // We can also pass `vec` without `&` so `Cow` owns it directly. In this
        // case, no mutation occurs (all numbers are already absolute) and thus
        // also no clone. But the result is still owned because it was never
        // borrowed or mutated.
        let vec = vec![0, 1, 2];
        let mut input = Cow::from(vec);
        abs_all(&mut input);
        // Replace `todo!()` with `Cow::Owned(_)` or `Cow::Borrowed(_)`.
        assert!(matches!(input, Cow::Owned(_)));
    }

    #[test]
    fn owned_mutation() {
        // Of course this is also the case if a mutation does occur (not all
        // numbers are absolute). In this case, the call to `to_mut()` in the
        // `abs_all` function returns a reference to the same data as before.
        let vec = vec![-1, 0, 1];
        let mut input = Cow::from(vec);
        abs_all(&mut input);
        // Replace `todo!()` with `Cow::Owned(_)` or `Cow::Borrowed(_)`.
        assert!(matches!(input, Cow::Owned(_)));
    }
}
  • This exercise will simulate the Cow pattern.

    The type Cow is a smart pointer providing clone-on-write functionality: it can enclose and provide immutable access to borrowed data, and clone the data lazily when mutation or ownership is required.

  • We just need to put proper type match, either Cow::Owned(_) or Cow::Borrowed(_).

    • reference_no_mutation should be Cow::Borrowed(_).

    • owned_no_mutation should be Cow::Owned(_).

    • owned_mutation should be Cow::Owned(_).

Smart Pointers
Using Box to Point to Data on the Heap
Rc<T>, the Reference Counted Smart Pointer
Shared-State Concurrency
Cow Documentation